|
|
Diffuse large B-cell lymphoma Diffuse large B-cell lymphomaDiffuse large B-cell lymphoma (DLBCL) is a cancer affecting the B cells, a type of lymphocyte that is responsible for producing antibodies. These cancerous white blood cells enlarge the lymph nodes and frequently migrate to the spleen, liver, bone marrow, and other organs. It is derived from white blood cells that grow in an uncontrolled, rapid manner. It is the most common form of lymphoma, comprising 25-30% of non-Hodgkin lymphomas (Padala SA et al. (2024)). This cancer occurs primarily in older individuals, although it can occur in young adults and, in rare cases, children. DLBCL can arise in virtually any part of the body and is often an aggressive malignancy. The main treatment includes chemoimmunotherapy, a combination of chemotherapy, steroids, and a targeted cancer drug (CRUK - Diffuse large B cell lymphoma). Differential abundance and machine learning analysisThis section presents the disease-specific results of the differential abundance and machine learning analyses. The analyses are reported for three comparisons: 1) disease vs. all other diseases, 2) disease vs. diseases from the same class, and 3) disease vs. healthy samples. Disease vs All other
Disease vs Class
Disease vs Healthy
Figure 1: In the volcano plot, proteins are plotted based on their fold change (logFC) on the x-axis and the statistical significance of the change (-log10 adjusted p-value) on the y-axis. Proteins considered differentially abundant are highlighted, defined by an adjusted p-value < 0.05 and an absolute logFC > 0.5.
Figure 2: Summary of machine learning selected proteins. Reported is the average importance across all bootstraps and the standard deviation for the 10 most important proteins. Feature importance is the model estimates for each protein, normalized to a scale of 1-100. Table 1: The summary table lists the results for all comparisons, sorted by p-value by default. It includes key metrics such as fold change and adjusted p-value, to allow exploration of the most significant proteins for each comparison.
The table also shows the average protein importance across all bootstraps.
Figure 1: In the volcano plot, proteins are plotted based on their fold change (logFC) on the x-axis and the statistical significance of the change (-log10 adjusted p-value) on the y-axis. Proteins considered differentially abundant are highlighted, defined by an adjusted p-value < 0.05 and an absolute logFC > 0.5.
Figure 2: Summary of machine learning selected proteins. Reported is the average importance across all bootstraps and the standard deviation for the 10 most important proteins. Feature importance is the model estimates for each protein, normalized to a scale of 1-100. Table 1: The summary table lists the results for all comparisons, sorted by p-value by default. It includes key metrics such as fold change and adjusted p-value, to allow exploration of the most significant proteins for each comparison.
The table also shows the average protein importance across all bootstraps.
Figure 1: In the volcano plot, proteins are plotted based on their fold change (logFC) on the x-axis and the statistical significance of the change (-log10 adjusted p-value) on the y-axis. Proteins considered differentially abundant are highlighted, defined by an adjusted p-value < 0.05 and an absolute logFC > 0.5.
Figure 2: Summary of machine learning selected proteins. Reported is the average importance across all bootstraps and the standard deviation for the 10 most important proteins. Feature importance is the model estimates for each protein, normalized to a scale of 1-100. Table 1: The summary table lists the results for all comparisons, sorted by p-value by default. It includes key metrics such as fold change and adjusted p-value, to allow exploration of the most significant proteins for each comparison.
The table also shows the average protein importance across all bootstraps.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Contact
The Project
The Human Protein Atlas