|
|
Multiple sclerosis Multiple sclerosisMultiple sclerosis (MS) is a chronic and debilitating autoimmune disease with neurodegenerative properties (Haki M et al. (2024)). It is a heterogeneous disease with inflammatory effects on the central nervous system that can cause demyelination and neuronal loss (Doshi A et al. (2016)). There are multiple types of MS, including clinically isolated syndrome (CIS), relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and primary progressive MS (PPMS) (Haki M et al. (2024)). As with other autoimmune diseases, females are more likely to be diagnosed than males. Smoking is a risk factor that can increase the chance of MS by up to 50% (Dobson R et al. (2019)). Diagnosis occurs between 20 and 50 years of age, and those of northern European descent have a higher risk of developing the disease (Haki M et al. (2024)). Differential abundance and machine learning analysisThis section presents the disease-specific results of the differential abundance and machine learning analyses. The analyses are reported for three comparisons: 1) disease vs. all other diseases, 2) disease vs. diseases from the same class, and 3) disease vs. healthy samples. Disease vs All other
Disease vs Class
Disease vs Healthy
Figure 1: In the volcano plot, proteins are plotted based on their fold change (logFC) on the x-axis and the statistical significance of the change (-log10 adjusted p-value) on the y-axis. Proteins considered differentially abundant are highlighted, defined by an adjusted p-value < 0.05 and an absolute logFC > 0.5.
Figure 2: Summary of machine learning selected proteins. Reported is the average importance across all bootstraps and the standard deviation for the 10 most important proteins. Feature importance is the model estimates for each protein, normalized to a scale of 1-100. Table 1: The summary table lists the results for all comparisons, sorted by p-value by default. It includes key metrics such as fold change and adjusted p-value, to allow exploration of the most significant proteins for each comparison.
The table also shows the average protein importance across all bootstraps.
Figure 1: In the volcano plot, proteins are plotted based on their fold change (logFC) on the x-axis and the statistical significance of the change (-log10 adjusted p-value) on the y-axis. Proteins considered differentially abundant are highlighted, defined by an adjusted p-value < 0.05 and an absolute logFC > 0.5.
Figure 2: Summary of machine learning selected proteins. Reported is the average importance across all bootstraps and the standard deviation for the 10 most important proteins. Feature importance is the model estimates for each protein, normalized to a scale of 1-100. Table 1: The summary table lists the results for all comparisons, sorted by p-value by default. It includes key metrics such as fold change and adjusted p-value, to allow exploration of the most significant proteins for each comparison.
The table also shows the average protein importance across all bootstraps.
Figure 1: In the volcano plot, proteins are plotted based on their fold change (logFC) on the x-axis and the statistical significance of the change (-log10 adjusted p-value) on the y-axis. Proteins considered differentially abundant are highlighted, defined by an adjusted p-value < 0.05 and an absolute logFC > 0.5.
Figure 2: Summary of machine learning selected proteins. Reported is the average importance across all bootstraps and the standard deviation for the 10 most important proteins. Feature importance is the model estimates for each protein, normalized to a scale of 1-100. Table 1: The summary table lists the results for all comparisons, sorted by p-value by default. It includes key metrics such as fold change and adjusted p-value, to allow exploration of the most significant proteins for each comparison.
The table also shows the average protein importance across all bootstraps.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Contact
The Project
The Human Protein Atlas