|
|
Pituitary neuroendocrine tumor Pituitary neuroendocrine tumorNeuroendocrine tumors are a diverse group of neoplasms that arise from cells of the endocrine system and can be classified based on hormone production and anatomical origin. Neuroendocrine tumors that produce hormones are considered functional, and those producing insignificant amounts of hormones are nonfunctional (Oronsky B et al. (2017)). Pituitary neuroendocrine tumors, also known as pituitary adenomas, are malignant growths in the pituitary gland. The pituitary gland produces hormones that control growth, metabolism, blood pressure, and stress, among other things. Pituitary neuroendocrine tumors are rare events, although incidence has been increasing in recent years. They are typically diagnosed via imaging techniques such as MRI, CT, and PET scans with histological confirmation through a biopsy (Mayo Clinic). Differential abundance and machine learning analysisThis section presents the disease-specific results of the differential abundance and machine learning analyses. The analyses are reported for three comparisons: 1) disease vs. all other diseases, 2) disease vs. diseases from the same class, and 3) disease vs. healthy samples. Disease vs All other
Disease vs Class
Disease vs Healthy
Figure 1: In the volcano plot, proteins are plotted based on their fold change (logFC) on the x-axis and the statistical significance of the change (-log10 adjusted p-value) on the y-axis. Proteins considered differentially abundant are highlighted, defined by an adjusted p-value < 0.05 and an absolute logFC > 0.5.
Figure 2: Summary of machine learning selected proteins. Reported is the average importance across all bootstraps and the standard deviation for the 10 most important proteins. Feature importance is the model estimates for each protein, normalized to a scale of 1-100. Table 1: The summary table lists the results for all comparisons, sorted by p-value by default. It includes key metrics such as fold change and adjusted p-value, to allow exploration of the most significant proteins for each comparison.
The table also shows the average protein importance across all bootstraps.
Figure 1: In the volcano plot, proteins are plotted based on their fold change (logFC) on the x-axis and the statistical significance of the change (-log10 adjusted p-value) on the y-axis. Proteins considered differentially abundant are highlighted, defined by an adjusted p-value < 0.05 and an absolute logFC > 0.5.
Figure 2: Summary of machine learning selected proteins. Reported is the average importance across all bootstraps and the standard deviation for the 10 most important proteins. Feature importance is the model estimates for each protein, normalized to a scale of 1-100. Table 1: The summary table lists the results for all comparisons, sorted by p-value by default. It includes key metrics such as fold change and adjusted p-value, to allow exploration of the most significant proteins for each comparison.
The table also shows the average protein importance across all bootstraps.
Figure 1: In the volcano plot, proteins are plotted based on their fold change (logFC) on the x-axis and the statistical significance of the change (-log10 adjusted p-value) on the y-axis. Proteins considered differentially abundant are highlighted, defined by an adjusted p-value < 0.05 and an absolute logFC > 0.5.
Figure 2: Summary of machine learning selected proteins. Reported is the average importance across all bootstraps and the standard deviation for the 10 most important proteins. Feature importance is the model estimates for each protein, normalized to a scale of 1-100. Table 1: The summary table lists the results for all comparisons, sorted by p-value by default. It includes key metrics such as fold change and adjusted p-value, to allow exploration of the most significant proteins for each comparison.
The table also shows the average protein importance across all bootstraps.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Contact
The Project
The Human Protein Atlas