We use cookies to enhance the usability of our website. If you continue, we'll assume that you are happy to receive all cookies. More information. Don't show this again.
PIK3CD
HPA
RESOURCES
  • TISSUE
  • BRAIN
  • SINGLE CELL
  • SUBCELLULAR
  • CANCER
  • BLOOD
  • CELL LINE
  • STRUCTURE & INTERACTION
ABOUT
  • INTRODUCTION
  • HISTORY
  • ORGANIZATION
  • PUBLICATIONS
  • ANTIBODY SUBMISSION
  • ANTIBODY AVAILABILITY
  • ACKNOWLEDGMENTS
  • CONTACT
NEWS
  • NEWS ARTICLES
  • PRESS ROOM
LEARN
  • DICTIONARY
  • PROTEIN CLASSES
  • PROTEIN EVIDENCE
  • METHODS
  • EDUCATIONAL VIDEOS
DATA
  • DOWNLOADABLE DATA
  • PUBLICATION DATA
  • RELEASE HISTORY
HELP
  • ANTIBODY VALIDATION
  • ASSAYS & ANNOTATION
  • DISCLAIMER
  • HELP & FAQ
  • PRIVACY STATEMENT
  • LICENCE & CITATION
Fields »
Search result

Field
Term
Gene name
Class
Subclass
Class
Keyword
Chromosome
External id
Tissue
Cell type
Expression
Antibody panel
Tissue
Main location
Patient ID
Annotation
Tissue
Category
Tau score
Cluster
Reliability
Brain region
Category
Tau score
Brain region
Category
Tau score
Brain region
Category
Tau score
Cluster
Reliability
Tissue
Cell type
Enrichment
Cell type
Category
Tau score
Cell type
Category
Tau score
Cell type
Category
Tau score
Cell lineage
Category
Tau score
Cluster
Cluster
Location
Searches
Location
Cell line
Class
Type
Phase
Reliability
Cancer
Prognosis
Cancer
Category
Cancer
Category
Tau score
Cluster
Variants
Interacting gene (ensg_id)
Type
Number of interactions
Pathway
Category
Score
Score
Score
Validation
Validation
Validation
Validation
Antibodies
Data type
Column


  • SUMMARY

  • TISSUE

  • BRAIN

  • SINGLE CELL

  • SUBCELL

  • CANCER

  • BLOOD

  • CELL LINE

  • STRUCT & INT

  • PIK3CD
PROTEIN SUMMARY GENE INFORMATION RNA DATA ANTIBODY DATA
Hippocampal formation Amygdala Basal ganglia Midbrain Spinal cord Cerebral cortex Cerebellum Hypothalamus Choroid plexus Retina Thyroid gland Parathyroid gland Adrenal gland Pituitary gland Lung Salivary gland Esophagus Tongue Stomach Rectum Colon Duodenum Small intestine Liver Gallbladder Pancreas Kidney Urinary bladder Testis Epididymis Prostate Seminal vesicle Vagina Breast Cervix Endometrium Fallopian tube Ovary Placenta Heart muscle Skeletal muscle Smooth muscle Adipose tissue Skin Bone marrow Thymus Tonsil Appendix Spleen Lymph node
PIK3CD INFORMATION
Proteini

Full gene name according to HGNC.

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta
Gene namei

Official gene symbol, which is typically a short form of the gene name, according to HGNC.

PIK3CD (p110D)
Protein classi

Assigned HPA protein class(es) for the encoded protein(s).

Disease related genes
Enzymes
FDA approved drug targets
Human disease related genes
Metabolic proteins
RAS pathway related proteins
Protein evidence Evidence at protein level (all genes)
Number of transcriptsi

Number of protein-coding transcripts from the gene as defined by Ensembl.

11
Protein interactions Interacting with 2 proteins
PROTEIN EXPRESSION AND LOCALIZATION
Tissue profilei

A summary of the overall protein expression profile across the analyzed normal tissues based on knowledge-based annotation, presented in the Tissue resource.

"Estimation of protein expression could not be performed. View primary data." is shown for genes where available RNA-seq and gene/protein characterization data in combination with immunohistochemistry data has been evaluated as not sufficient to yield a reliable estimation of the protein expression profile.
Cytoplasmic expression mainly in lymphoid tissues.
Subcellular locationi

Main subcellular location based on data generated in the subcellular section of the Human Protein Atlas.

Localized to the Vesicles In addition localized to the Microtubules, Cytokinetic bridge, Primary cilium, Primary cilium tip, Cytosol
Predicted locationi

All transcripts of all genes have been analyzed regarding the location(s) of corresponding protein based on prediction methods for signal peptides and transmembrane regions.

  • Genes with at least one transcript predicted to encode a secreted protein, according to prediction methods or to UniProt location data, have been further annotated and classified with the aim to determine if the corresponding protein(s) are secreted or actually retained in intracellular locations or membrane-attached.

  • Remaining genes, with no transcript predicted to encode a secreted protein, will be assigned the prediction-based location(s).

The annotated location overrules the predicted location, so that a gene encoding a predicted secreted protein that has been annotated as intracellular will have intracellular as the final location.

Intracellular
TISSUE RNA EXPRESSION
Tissue specificityi

The RNA specificity category is based on normalized mRNA expression levels in the consensus dataset, calculated from the RNA expression levels in samples from HPA and GTEX. The categories include: tissue enriched, group enriched, tissue enhanced, low tissue specificity and not detected.

Group enriched (Bone marrow, Intestine, Lymphoid tissue)
Tissue expression clusteri

The RNA data was used to cluster genes according to their expression across tissues. Clusters contain genes that have similar expression patterns, and each cluster has been manually annotated to describe common features in terms of function and specificity.

Lymphoid tissue - Immune response (mainly)
Brain specificityi

The regional specificity category is based on mRNA expression levels in the analysed brain samples, grouped into 13 main brain regions and calculated for the three different species. All brain expression profiles are based on data from HPA. The specificity categories include: regionally enriched, group enriched, regionally enhanced, low regional specificity and not detected. The classification rules are the same used for the tissue specificity category

Low human brain regional specificity
Brain expression clusteri

The RNA data was used to cluster genes according to their expression across tissues. Clusters contain genes that have similar expression patterns, and each cluster has been manually annotated to describe common features in terms of function and specificity.

Non-specific - Mixed function (mainly)
CELL TYPE RNA EXPRESSION
Single cell type specificityi

The RNA specificity category is based on mRNA expression levels in the analyzed cell types based on scRNA-seq data from normal tissues. The categories include: cell type enriched, group enriched, cell type enhanced, low cell type specificity and not detected.

Cell type enhanced (T-cells, dendritic cells, NK-cells, Microglial cells, Kupffer cells, B-cells, Macrophages)
Single cell type
expression clusteri

The RNA data was used to cluster genes according to their expression across single cell types. Clusters contain genes that have similar expression patterns, and each cluster has been manually annotated to describe common features in terms of function and specificity.

T-cells - T-cell receptor (mainly)
Tissue cell type classificationi

Genes can have enriched specificity in different cell types in one or several tissues, or be enriched in a core cell type that appears in many different tissues.

Cell type enriched (Adrenal gland - Macrophages, Prostate - T-cells, Testis - Spermatogonia, Thyroid gland - T-cells)
Immune cell specificityi

The RNA specificity category is based on mRNA expression levels in the analyzed samples based on data from HPA. The categories include: cell type enriched, group enriched, cell type enhanced, low cell type specificity and not detected.

Low immune cell specificity
Immune cell
expression clusteri

The RNA data was used to cluster genes according to their expression across single cell types. Clusters contain genes that have similar expression patterns, and each cluster has been manually annotated to describe common features in terms of function and specificity.

Monocytes & Neutrophils - Degranulation (mainly)
CANCER & CELL LINES
Prognostic summary PIK3CD is a prognostic marker in Kidney renal papillary cell carcinoma, Pancreatic adenocarcinoma
Cancer specificityi

Specificity of RNA expression in 17 cancer types is categorized as either cancer enriched, group enriched, cancer enhanced, low cancer specificity and not detected.

Low cancer specificity
Cell line
expression clusteri

The RNA data was used to cluster genes according to their expression across cell lines. Clusters contain genes that have similar expression patterns, and each cluster has been manually annotated to describe common features in terms of function and specificity.

Leukemia - Signal transduction (mainly)
Cell line specificityi

RNA specificity category based on RNA sequencing data from cancer cell lines in the Human Protein Atlas grouped according to type of cancer. Genes are classified into six different categories (enriched, group enriched, enhanced, low specificity and not detected) according to their RNA expression levels across the panel of cell lines.

Cancer enhanced (Leukemia, Lymphoma)
PROTEINS IN BLOOD
Detected in blood by
immunoassayi

The blood-based immunoassay category applies to actively secreted proteins and is based on plasma or serum protein concentrations established with enzyme-linked immunosorbent assays, compiled from a literature search. The categories include: detected and not detected, where detection refers to a concentration found in the literature search.

No (not applicable)
Detected in blood by
mass spectrometryi

Detection or not of the gene in blood, based on spectral count estimations from a publicly available mass spectrometry-based plasma proteomics data set obtained from the PeptideAtlas.

No
Proximity extension assayi

Detectibility in blood, based on proximity extension assays (Olink) for a longitudinal wellness study covering 76 individuals with six visits during two years.

Read more
Data available (Low detectability)
PROTEIN FUNCTION
Protein function (UniProt)i

Useful information about the protein provided by UniProt.

Phosphoinositide-3-kinase (PI3K) phosphorylates phosphatidylinositol (PI) and its phosphorylated derivatives at position 3 of the inositol ring to produce 3-phosphoinositides 1. Uses ATP and PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3) 2. PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Mediates immune responses. Plays a role in B-cell development, proliferation, migration, and function. Required for B-cell receptor (BCR) signaling. Mediates B-cell proliferation response to anti-IgM, anti-CD40 and IL4 stimulation. Promotes cytokine production in response to TLR4 and TLR9. Required for antibody class switch mediated by TLR9. Involved in the antigen presentation function of B-cells. Involved in B-cell chemotaxis in response to CXCL13 and sphingosine 1-phosphate (S1P). Required for proliferation, signaling and cytokine production of naive, effector and memory T-cells. Required for T-cell receptor (TCR) signaling. Mediates TCR signaling events at the immune synapse. Activation by TCR leads to antigen-dependent memory T-cell migration and retention to antigenic tissues. Together with PIK3CG participates in T-cell development. Contributes to T-helper cell expansion and differentiation. Required for T-cell migration mediated by homing receptors SELL/CD62L, CCR7 and S1PR1 and antigen dependent recruitment of T-cells. Together with PIK3CG is involved in natural killer (NK) cell development and migration towards the sites of inflammation. Participates in NK cell receptor activation. Plays a role in NK cell maturation and cytokine production. Together with PIK3CG is involved in neutrophil chemotaxis and extravasation. Together with PIK3CG participates in neutrophil respiratory burst. Plays important roles in mast-cell development and mast cell mediated allergic response. Involved in stem cell factor (SCF)-mediated proliferation, adhesion and migration. Required for allergen-IgE-induced degranulation and cytokine release. The lipid kinase activity is required for its biological function. Isoform 2 may be involved in stabilizing total RAS levels, resulting in increased ERK phosphorylation and increased PI3K activity.... show less
Molecular function (UniProt)i

Keywords assigned by UniProt to proteins due to their particular molecular function.

Kinase, Transferase
Biological process (UniProt)i

Keywords assigned by UniProt to proteins because they are involved in a particular biological process.

Adaptive immunity, Chemotaxis, Differentiation, Immunity, Inflammatory response, Innate immunity, Lipid metabolism
Ligand (UniProt)i

Keywords assigned by UniProt to proteins because they bind, are associated with, or whose activity is dependent of some molecule.

ATP-binding, Nucleotide-binding
Gene summary (Entrez)i

Useful information about the gene from Entrez

Phosphoinositide 3-kinases (PI3Ks) phosphorylate inositol lipids and are involved in the immune response. The protein encoded by this gene is a class I PI3K found primarily in leukocytes. Like other class I PI3Ks (p110-alpha p110-beta, and p110-gamma), the encoded protein binds p85 adapter proteins and GTP-bound RAS. However, unlike the other class I PI3Ks, this protein phosphorylates itself, not p85 protein.[provided by RefSeq, Jul 2010]... show less

Contact

  • NEWS ARTICLES
  • PRESS ROOM

The Project

  • INTRODUCTION
  • ORGANIZATION
  • PUBLICATIONS

The Human Protein Atlas

  • DOWNLOADABLE DATA
  • LICENCE & CITATION
  • HELP & FAQ
The Human Protein Atlas project is funded
by the Knut & Alice Wallenberg Foundation.


contact@proteinatlas.org